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Abstract—The focus of this work is on the design of Raptor
codes for continuous variable Quantum key distribution (CV-
QKD) systems. We design a highly efficient Raptor code for
very low signal to noise ratios (SNRs), which enables CV-QKD
systems to operate over long distances with a significantly higher
secret key rate compared to conventional fixed rate codes. The
degree distribution design of Raptor codes in the low SNR
regime is formulated as a linear program, where a set of
optimized degree distributions are also obtained through linear
programming. Simulation results show that the designed code
achieves efficiencies higher than 94% for SNRs as low as -20
dB and -30 dB. We further propose a new error reconciliation
protocol for CV-QKD systems by using Raptor codes and show
that it can achieve higher key rates over long distances compared
to existing protocols.

Index Terms—BI-AWGN, belief propagation decoding, Raptor
codes, QKD.

I. INTRODUCTION

Quantum key distribution (QKD) enables two spatially-
separated parties to share a secure random key, which is
the first practical application of quantum physics. In QKD
systems, the secret key is established through exchanging
quantum states even in the presence of an eavesdropper,
with the help of a classical auxiliary authenticated commu-
nication channel. Two major approaches to QKD include
discrete variable QKD (DV-QKD), which uses single-photon
or weak coherent states with a single photon detector, and
continuous variable QKD (CV-QKD), where coherent states
with homodyne detectors are used. These approaches have
shown to be information-theoretic secure [1]. Due to recent
technological advancement in quantum physics, CV-QKD is
shown to effectively overcome some limitations of DV-QKD
systems, which are mainly due to the speed and efficiency
of single photon detectors. This is achieved by encoding
information on continuous variables such as the quadrature
of coherent states.

In conventional standard QKD protocols, Gaussian modu-
lated coherent states are prepared and measured by a homo-
dyne or hetrodyne detector [2]. Although, this is optimal in
terms of the theoretical security [1], the efficiency of current
reconciliation protocols for Gaussian variables dramatically
drops in the low SNR regime. Non-Gaussian modulations,
either discrete [3] or continuous [4], were then proposed
to overcome this problem as they theoretically increase the
achievable secure distance of CV-QKD systems. They are

also compatible with high-performance error correction, which
enables them to efficiently extract the information available in
their raw data. Towards this, [2] proposed high efficiency error
correction code which can be combined with a multidimen-
sional reconciliation scheme, where a secret key exchange was
enabled for a CV-QKD system with Gaussian modulation in
the low SNR regime. In fact, to achieve high key generation
rates and longer transmission distances, the reconciliation step
on the classical communication channel has to correct key
errors close to the theoretical limits to minimize the amount
of information leaked to a potential attacker. In this regard,
very low rate capacity approaching error control codes are
required for the error reconciliation stage of QKD systems.

Iterative error control codes have the potential to substan-
tially improve the efficiency of QKD systems. For instance,
the DVB-S2 codes, like repeat accumulate (RA) codes, have
been investigated to use in QKD systems in [], where the
codeword length is 64800 and the lowest code rate is 1/4.
Although, the same design approach along with puncturing
and extension techniques can be used to design lower rate RA
codes, these codes have shown to have poor efficiencies in
very low SNRs, which limit their applications in long distance
CV-QKD systems. Moreover, multi-edge type LDPC (MET-
LDPC) codes were shown in [2] to theoretically approach
high efficiencies in low SNRs. However, existing very low
rate codes, such as RA and ME-LDPC codes, actually have
a very poor word error rate performance and so will only
produce good efficiencies for theoretical threshold results or
for finite-length results where the allowed word error rate is
very high.

To overcome this problem and enable CV-QKD systems to
operate over very long distances, we propose to use rateless
codes in the error reconciliation step. Binary rateless codes
are special types of code on graphs, which can potentially
generate an unlimited number of coded symbols. Thanks to
the interesting properties of graph codes, Luby proposed the
first practical realization of rateless codes, namely the Luby
Transform (LT) code [5]. These codes have very simple en-
coding and decoding processes and can approach the capacity
of binary erasure channels (BECs) with an unknown erasure
rate. A more practical extension of this code, namely Raptor
code, can be obtained by precoding the entire data using a
high rate LDPC code and then use an LT code to generate
an unlimited number of coded symbols. The encoding and



decoding of these codes are linear in terms of the message
length; and thus practical for several applications with large
data transmission.

Raptor codes were studied for additive white Gaussian noise
(AWGN) channels in [6], where a systematic framework was
proposed to find the optimal degree distribution in all signal
to noise ratios (SNRs). More specifically, a linear program
was proposed to find the optimal degree distribution for a
capacity approaching code. The authors in [7] have studied
the feasibility of this linear program and shown that it is only
feasible for SNR larger than a certain value, which depends
on the average variable node degree. However, as mentioned
in [7, 8], the linear program fails to provide good degree
distributions in very low SNRs (below -10 dB).

In this paper, we study the design of Raptor code in
the low SNR regime, where the existing linear program is
approximated through several mathematical tools and a more
practical linear program is then proposed. A set of optimal
degree distributions are then derived, which show excellent
performance in very low SNRs. This motivates us to use these
codes in CV-QKD systems, where highly efficient very low
rate codes can significantly improve the secret key rate and
operational distances. For this aim, we slightly modify the
conventional error reconciliation protocol to adapt with the
rateless nature of Raptor codes. Numerical results show that
the proposed scheme provides near optimal secret key rate and
outperforms existing fixed-rate protocols in terms of secret key
rate in different operational distances.

The rest of the paper is organized as follows. Section II
presents an overview on Raptor codes. In Section II, we
present the general framework to design the degree distribution
of Raptor codes and propose a linear program for the design
of Raptor codes in the low SNR regime. We then show in
Section IV, how Raptor codes can be used in QKD systems,
where we propose a new error reconciliation protocol for CV-
QKD systems. Simulation results are presented in Section V.
Finally, Section VI concludes the paper.

II. AN OVERVIEW ON RAPTOR CODES

We first provide a brief overview on two most practical
rateless codes, referred to as LT and Raptor codes. These codes
are rateless in the sense that they can produce an infinite num-
ber of coded symbols until the destination receives sufficient
information to perform successful decoding. Each LT code is
characterize by a message length k and a degree distribution
function. The encoding process of LT codes contains two
important steps. First, an integer d, called degree, is obtained
from a predefined probability distribution function, called a
degree distribution. Second, d distinct information symbols are
uniformly selected at random and then XORed to produce one
coded symbol. The encoding process will be terminated when
the sender receives an acknowledgement from the destination
or a pre-determined number of coded symbols are sent.

Let Ωd denote the probability that the degree is d. Then, the
degree distribution function can be represented in a polynomial
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Fig. 1. The factor graph of an LT code truncated at code length m.

form as follow:

Ω(x) =
D∑
d=1

Ωdx
d, (1)

where D is the maximum code degree. The degree distribution
with respect to edges is defined by ω(x) = Ω′(x)/Ω′(1) [9],
where Ω′(x) is the derivative of Ω(x) with respect to x and
β := Ω′(1) is the average output node degree. The degree
distribution can be defined from input node and edge per-
spective, and it has been shown in [9] that it is asymptotically
eα(x−1), when the message length goes to infinity, where α

is the average input node degree. The LT encoding process
can be represented by a bipartite graph, when information and
coded symbols are represented by variable and check nodes,
respectively. Fig. 1 shows the bipartite graph of a LT code
truncated at code length m.

Since information symbols in the LT encoding process
are selected uniformly at random, it is probable that some
information symbols are not selected by any coded symbols.
Therefore, these information symbols cannot be decoded at the
receiver. To overcome this problem, Shokrollahi [2] proposed
to use a high rate precoder before LT encoding. The entire
code is then called Raptor code, which is characterized by a
precoder C of a fixed rate, a message length k, and a degree
distribution function. In other words, a Raptor code is a simple
concatenation of a high rate code (usually an LDPC code due
to its simplicity) and an LT code. A sum product algorithm
(SPA) is usually used for the decoding of Raptor codes, where
log-likelihood ratios (LLRs) are passed as messages along
edges from variable to check nodes and vice versa in an
iterative manner. More details of this decoder can be found
in [6].

The realized rate of a Raptor code is defined as the ratio
of the message length, k, and the average number of coded
symbols required for the successful decoding of the entire
message at the destination. In a practical system, feedback
is used to adjust the total number of coded symbols sent for
each message. Let n(γ) denote the number of coded symbols
required for the receiver to successfully decode a message of
length k using a Raptor code at SNR γ. The realized rate of
the Raptor code is then given by:

Rr(γ) = k/E[n(γ)], (2)

where E is the expectation operator. The rate efficiency of the
code at SNR γ, denoted by η(γ), is then defined as the ratio
of the realized rate and channel capacity C(γ), i.e.,

η(γ) = Rr(γ)/C(γ), (3)



III. RAPTOR CODES IN THE LOW SNR REGIME

A. Degree Distribution Optimization

In [6], a framework to optimize the degree distribution
of a Raptor code for a given BI-AWGN channel has been
proposed. This framework, referred to as the mean-LLR-Exit
chart approach, was proposed based on two assumptions.
The first is the cycle-free assumption, which means that the
factor graph representation of Raptor codes is locally cycle-
free, which is well justified when the graph is large and
sparsely connected. This assumption enables us to assume
that all incoming SPA messages arriving at a given node are
statistically independent. The second assumption is that the
probability density of a message passed from an input symbol
to an output node along a randomly chosen edge in the graph
is a mixture of symmetric Gaussian distributions. This can
be satisfied when the degree of each input node is relatively
large, then according to the Central Limit Theorem the sum
of incoming messages to an input node follows a Gaussian
distribution. The mixture of Gaussian model is then due to
the irregular degrees of input nodes [7].

Using the SPA decoder and the assumption that the mes-
sages are mutually independent symmetric Gaussian random
variables, the mean value of the LLR message from a check
node of degree d to a neighboring variable node can be
calculated as follows [6]:

fd(µ) = 2E

tanh−1

tanh

(
Z

2

) d−1∏
q=1

tanh

(
Xq

2

) , (4)

where Z is the channel LLR, which follows a symmetric
Gaussian distribution with mean 2γ and variance 4γ, and Xq is
the incoming LLR message from a neighboring variable node,
which is also modeled by a symmetric Gaussian distribution
with mean µ and variance 2µ, for q = 1, · · · , d − 1. As the
outgoing message from a variable node to an adjacent check
node on the SPA decoding is the sum of incoming LLR
messages from the neighboring check nodes, the average
value of the outgoing message from a variable node can be
calculated by α∑D

d=1 ωdfd(µ). This arises from the fact that the
average number of edges connected to each variable node is α
and the probability that a randomly chosen edge is connected
to a check node of degree d is ωd [6].

Accordingly, [6] proposed the following linear program to
maximize the design rate of the LT code, defined as Rdesign :=

β/α, for given α, D, and the target maximal message mean µo:

minimize α
∑D
d=1 ωd/d (5)

s.t. (i). α
∑D
d=1 ωdfd

(
µj
)
> µj , ∀j = 1, · · · , N,

(ii).
∑D
d=1 ωd = 1,

(iii). ωd ≥ 0, ∀d = 1, · · · , D,

where {µj |j = 1, · · · , N} is a set of equally spaced values in
range (0, µo] and µN = µo. The constraint (i) in the above
linear program is to make sure that the average LLR message
is increased after each iteration of the SPA decoding. It is
important to note that µo, the mean bit LLR at the output of

the LT decoder, is chosen to be large enough to ensure that the
decoding of outer code C is successful. Authors in [7] provided
a detailed study of the feasibility of the linear program (5)
based on parameters µo and α. More specifically, they showed
that for SNRs higher than SNRlow = µo/2α the linear program
is feasible and thus has a solution. The following lemma shows
that, for any SNR, the linear program (5) is always feasible
in the asymptotic case, where the maximum degree goes to
infinity.

Lemma 1: Linear program (5) is feasible for every SNR,
when the average input node degree goes to infinity.

Proof: The proof of this lemma follows directly from the
proof of Lemma 2 and Theorem 1 in [7]. More specifically,
fd(µ) is shown to be increasing with µ for d > 1, and also it
decreases with d for any µ and SNR. Therefore, we have:

fd(µ) ≤ f1(µ) = 2SNR.

Therefore, for constraint (i) in (5), we have:

α

D∑
d=1

ωdfd(µi) ≤ α
D∑
d=1

ωdf1(µi) = αf1(µi) = 2αSNR,

which directly follows from (4) by substituting d with 1 and
the fact that E[Z] = 2γ. Thus, we have µi < 2αSNR. For the
maximum value of µi, i.e., µo, we also have µo ≤ 2αSNR. Now
suppose that SNR > µo/2α, then it is clear that ω(x) = 1 satisfies
all constraints in (5), thus the optimization is feasible. In an
asymptotic case, when the maximum degree is very large, α is
potentially infinite, thus the optimization problem is feasible
for SNR > limα→∞ µo/2α = 0. This completes the proof.

B. Degree Optimization in the Low SNR Regime

Let us have a closer look at function fd(µ) defined in (4),
when the channel SNR, γ, goes to zero. We define the function
hd(Z,Xd) as follows:

hd(Z,Xd) = 2 tanh−1

tanh

(
Z

2

) d−1∏
q=1

tanh

(
Xq

2

) , (6)

where Xd , (X1, ..., Xd−1). Then it is clear that fd(µ) =

E[h(Z,Xd)]. It can be easily verified that the even-order deriva-
tives of hd(Z) at Z = 0 are zero; therefore, the Maclaurin series
of hd(Z,Xd) can be shown as follows:

hd(Z,Xd) = ZPd +
Z3

12

(
P3
d − Pd

)
+O(Z5) (7)

where Pd ,
∏d−1
q=1 tanh

(
Xq
2

)
. Then, fd(µ) can be approximated

as follows:

fd(µ) = E[hd(Z,Xd)] ≈ E

[
ZPd +

Z3

12

(
P3
d − Pd

)]
. (8)

Let M2n−1(x, 2x) denote the (2n− 1)th moment of a Gaussian
distribution with mean x and variance 2x, which can be found
as follows [10]:

M2n−1(x, 2x) =

n−1∑
j=0

(2n− 1

2j

)
(2j − 1)!!2jx2n−j−1, (9)



and the double factorial for odd numbers is defined as (2j −
1)!! = (2j − 1)(2j − 3) · · · 5.3.1. It is easy to verify that that the
minimum degree of M2n−1(x, 2x) is n. Therefore, for γ very
close to zero, E(Z2n−1) is of O(γn). Then (8) can be further
simplified as follows:

fd(µ) ≈ 2γ

d−1∏
q=1

E
[
tanh

(
Xq

2

)]
+O(γ2),≈ 2γ

d−1∏
q=1

E
[
tanh

(
Xq

2

)]

which follows from the fact that Z follows a symmetric
Gaussian distribution with mean 2γ, Xq and Z are mutually
independent random variables for q = 1, · · · , d, and γ goes to
zero. we can define function ϕ(µ) for µ ≥ 0 as follows:

ϕ(µ) = E
[
tanh

(
X

2

)]
=

1
√

4πµ

∫ ∞
−∞

tanh
(u

2

)
e−

(u−µ)2
4µ du.

(10)

Thus, fd(µ) can be further simplified as follows:

fd(µ) ≈ 2γ [ϕ(µ)]d−1 , (11)

The left hand side of the condition (i) in (5) can then be
rewritten as follows:

α
∑
d

ωdfd (µ) ≈ 2γα
∑
d

ωd [ϕ(µ)]d−1 . (12)

It is important to note that in the low SNR regime, by using
the well-know Maclaurin series of function ln(1 + γ), the BI-
AWGN channel capacity can be approximated as follows:

Cb(γ) =
1

2
log2(1 + γ) =

1

2 ln(2)

(
γ +O(γ2)

)
. (13)

Therefore, for a Raptor code with rate efficiency η at very low
SNR γ, we have:

β = ηαCb(γ) =
ηα

2 ln(2)

(
γ +O(γ2)

)
, (14)

which can be rewritten as follows:
ηα
∑
d ωdfd (µ)

4 ln(2)
≈ β

∑
d

ωd [ϕ(µ)]d−1 =
∑
d

dΩd[ϕ(µ)]d−1 (15)

We can then reformulate the optimization problem for a given
maximum degree D as follows, when γ goes to zero:

maximize ∑D
d=1 dΩd (16)

s.t. (i).
∑D
d=1 dΩd[ϕ(µj)]

d−1 >
η(µj+ε)

4 ln(2)
,

(ii).
∑D
d=1 Ωd = 1,

(iii). Ωd ≥ 0, ∀d = 1, ..., D,

where j = 1, · · · , N and we introduced ε > 0 in condition
(i) to have a non-zero Ω1. This is because ϕ(0) = 0, and
when ε = 0, the optimal value of Ω1 would be zero. This
means than in the first iteration of the SPA decoding, the LLR
values cannot be updated as the average LLR is not increasing.
Therefore, a nonzero ε is necessary to guarantee that the
decoder can proceed and converge to a nonzero value. The
above optimization is linear for a given η, µo and D. However,
we consider a joint optimization problem, where instead of
supplying a predetermined η, the above linear program is

TABLE I
OPTIMIZED DEGREE DISTRIBUTIONS AND THEIR CORRESPONDING

MAXIMUM EFFICIENCIES η AND AVERAGE DEGREE, β , WHEN ε = 0.01.

D 100 300
µo 30 40 30 40
Ω1 0.0035 0.0034 0.0034 0.0035
Ω2 0.3493 0.3397 0.3574 0.3538
Ω3 0.2314 0.2095 0.2377 0.2338
Ω4 0.0624 0.1256 0.0651 0.0737
Ω5 0.1115 - 0.1036 0.0755
Ω6 - - - 0.0262
Ω7 - 0.1462 0.0316 0.0608
Ω8 0.0436 - 0.0622 -
Ω9 0.0696 - - -
Ω11 - - - 0.0493
Ω12 - - - 0.0255
Ω13 - - 0.0382 -
Ω14 - - 0.0242 -
Ω17 - 0.0337 - -
Ω18 - 0.0495 - -
Ω20 0.0286 - - -
Ω21 0.0401 - - 0.0002
Ω23 - - - 0.0454
Ω26 - - 0.0096 -
Ω27 - - 0.0292 -
Ω57 - - - 0.0072
Ω58 - - - 0.0180
Ω66 - - 0.0179 -
Ω67 - - 0.0039 -
Ω100 0.0599 0.0924 - -
Ω300 - - 0.0158 0.0272
β 10.5821 13.5444 10.9777 14.1800
η 0.9680 0.9378 0.9908 0.9805

converted to a general non-linear optimization problem with
the same objective and constraints as in (16), but optimizing
jointly over (η,Ω(x)). For this aim, an optimal η can be found
by searching over a relatively large range of discretized values
of η, where for each η the optimization is converted to a linear
program.

C. Rate Efficiency Results

Table I shows some optimal degree distributions for dif-
ferent D and µo, when ε = 0.01. As can be seen in this
table, with increasing the maximum degree D, the maximum
efficiency of the code increases. This is due to larger degrees
of freedom when increasing the maximum degree, which leads
to larger feasibility region for the linear program. Moreover,
with increasing µo, the maximum rate efficiency decreases,
which is due to the larger number of inequality constraints in
the linear program and accordingly smaller feasibility region.

Fig. 2 shows the rate efficiency versus the SNR for a Raptor
code by using the optimized degree distribution listed in Table
I, when the maximum degree is 300 and µo = 40. As can be
seen in this figure, the code approaches efficiencies larger than
0.95 for very low SNRs when the message length is larger
than 10000. Moreover, by increasing the message length, the
rate efficiency improves which is due to the fact that the tree
assumption and independence of the messages in the SPA
decoding are more likely to be met as the message length
increases. It is important to note that the efficiency at SNRs
larger than -10 dB using the degree distributions obtained from
Table I is not high enough which is due to the fact that these
degree distributions were designed for very low SNRs. For
SNR larger than -10 dB, one could solve the original linear
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Fig. 2. Rate efficiency versus the SNR for a Raptor code with the
optimized degree distribution and different message lengths, when D = 300.
The code length for RA codes [] is 64800 and the code length for MET-
LDPC is 106 [2]. The WER for rate 1/50 and 1/10 MET-LDPC codes
are respectively {0.91, 0.54, 0.16, 0.038, 0.021, 0.014, 0.012, 0.009} and
{1.8× 10−3, 5.7× 10−4, 1.2× 10−4, 3× 10−5, 1.5× 10−5} from top to
the bottom. .

program (5) to find the optimal degree distribution, which has
been shown that can achieve efficiencies larger than 92% at
those SNRs [8]. The rate efficiencies for these codes have been
also shown in Fig. 2.

We have also compares rate 1/10 and 1/50 MET-LDPC
codes, and LDPC codes used in the DVB-S2 Standard []
in Fig. 2. Lower rates of the RA codes have been obtained
from []. As can be seen in this figure, Raptor codes with
appropriately designed degree distribution can achieve higher
efficiencies in comparison with the fixed rate codes in the
entire SNR rage. It is important to note that LDPC and MET-
LDPC codes can be designed for different rates, but, existing
techniques fail to design very high efficient low rate codes for
the low SNR regime. Moreover, the rate efficiency of fixed
rate codes is decreases with decreasing the word error rate,
which is also clear from Fig. 2.

IV. RAPTOR CODES FOR QKD SYSTEMS

In the error reconciliation protocols with fixed rate LDPC
codes, the receiver may not completely decode the key due
to the non-zero word error rate of the code; thus throwing
them away. This will limit the total key rate, as the total
efficiency of the LDPC codes depends on the word error rate.
This also has implications for security because throwing away
erroneous codewords is a form of post selection. As the focus
of this paper is on the coding efficiency of the proposed raptor
code over a CV-QKD systems, we omit the details of the
Gaussian channel modeling and the reverse BI-AWGN channel
in the CV-QKD with reverse reconciliation due to the space
limitation. More details of the physical model can be found
in [11].

To solve this problem, we propose to use Raptor codes to
potentially send an unlimited number of coded symbols to
the receiver, until it can successfully decode the key. No post
selection is required as the WER is zero. This protocol is
similar to [2], but it runs in an iterative manner. Let k denote
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Ĉ(1)

ni−1

n1 · · ·

Fig. 3. The proposed error reconciliation protocol using Raptor codes.

the desired length of the key. The steps of the proposed QKD
protocol employing the reverse reconciliation are as follows:

S1 Bob encodes random bits X(1) onto quantum states and
transmits them over a quantum channel to Alice who
measures the received states Y . Here Y = X(1) +N where
N is additive white Gaussian noise with variance σ2.
Alice and Bob estimate the SNR (equivalently σ, where
SNR = 1/σ2). For simplicity we assume the transmissions
used to estimate the noise are separate to the states in
X(1).

S2 A k-bit key, X(2), is generated randomly. Bob then
chooses a sequence of integers, n1, n2, ..., that are chosen
such that k/n1 = C(σ2), k/(n1 + n2) = 0.99C(σ2), and so
on.

The remainder of the steps are iterated until a successful
decoding has occurred. In the ith iteration, Alice and Bob
do the following for i ≥ 1:

S3 The k bit message X(2) is encoded to a Raptor codeword
C(i) of length ni using a Raptor code with predetermined
degree distribution function.

S4 Using ni of the bits sent over the quantum channel the
vector X(3,i) = X(1,i) ⊕ C(i) is sent to Alice. Alice can
then subtract Yi from X(3,i) to obtain Ĉ(i). If Y (i) is error
free Ĉ(i) will be identical to C(i). A Raptor decoder is
used to decode the key, where all received signals from
previous iterations, i.e., [Ĉ(1), ..., Ĉ(i−1), Ĉ(i)] are consid-
ered as the codeword. If decoding is successful, Alice
sends an acknowledgment to Bob to stop transmitting
new parity bits. Otherwise, step S3 and S4 are repeated
with i = i+ 1.

Note that the key length is fixed, but the number of trans-
missions required on the quantum channel are not. Fig. 3
shows the steps of the error reconciliation in the proposed
scheme using Raptor codes. The proposed scheme has the
following advantages, which make it an excellent choice for
QKD systems.
• The encoding/decoding is linear in terms of the mes-

sage length. This means that linear-time practical en-
coder/decoder can be implemented for them.

• Unlike the design of fixed rate codes which is not always
straightforward for all SNRs, a linear program can be



defined to find the optimal degree distribution of a Raptor
code for any SNR.

• Raptor codes shows a very high efficiency in very low
SNR values, where the existing LDPC codes poorly
perform in practice. This enables the CV-QKD systems
to operate over very large distances.

• Conventional fixed rate codes usually show poor per-
formance in very low word error rates when the block
length is finite. This significantly reduces the key rate of
the QKD systems. But with Raptor codes, an error free
message is always delivered at the receiver by sending as
many coded symbols as required by the receiver.

V. NUMERICAL RESULTS

We assume a coherent state CV-QKD system with ho-
modyne detection and employing reverse reconciliation. The
eavesdropper is assumed to utilize collective attacks. The CV-
QKD model has the following free parameters. The signal
variance encoded by Alice VA, the channel loss T , the channel
excess noise εn, the homodyne efficiency ηh, and dark noise
vel in Bob’s station. The equivalent AWGN channel SNR can
then be represented as follows [2]:

γ =
VATη

2 + εnTηh + 2vel
. (17)

The maximum secret information available for an actual rec-
onciliation with an imperfect code of efficiency η is given by
∆I = ηIAB−IE , where IAB and IE are the mutual information
of Alice and Bob and that of Eavesdropper, respectively. The
secret key rate can be obtained as follows:

KeyRate = (1− pw)(ηIAB − IE), (18)

where pw is the WER of the code, which is zero for Raptor
codes. An exact expression for the secret key rate of a CV-
QKD system can be found in [11]. It is important to note
that in this paper, we do not consider finite-size effects, which
means that our numerical results show the secret key rate in
the regime of infinite block length [2].

Fig. 4 shows the optimized secret key rate as a function of
channel loss for a CV-QKD system with homodyne detection
and different coding schemes. Note that DVBS2, RA and
MET-LDPC codes show different rate efficiencies for different
WER values. Thus, the secret key optimization for these codes
has to be carried out over different SNRs and WERs. The
results in Fig. 4 are based on simulation results for finite length
RA and ME codes with secret key optimization for these codes
carried out over different SNRs and WERs. As can be seen
in this figure, the proposed error reconciliation protocol with
Raptor codes significantly outperforms the existing protocols
over all distances. This comes from the fact that existing fixed
rate codes shows very poor efficiencies (< 75%) in very low
SNRs even with a large WER (1/10), while Raptor codes
achieve very high efficiencies (> 95%) with zero WER in SNRs
as low as -20 dB and -30 dB.
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Fig. 4. Secret key rate as a function of distance for a CV-QKD system with a
homodyne detector and Raptor/RA/MET-LDPC codes. The code efficiencies
for ME-LDPC and DVB-S2/RA codes are respectively taken from [2] for
pw = 1/3 and from [] for pw ∈ {0.1, 0.01}. ηh = 0.6, Vel = 0.01, and
εh = 0.01.

VI. CONCLUSIONS

In this paper, we studied the design of degree distribution
of Raptor codes in the low SNR regime and proposed a linear
program to obtain the optimal degree distribution. Simulation
results showed that Raptor codes achieve very high efficiencies
in very low SNRs that makes them very attractive to be used
in QKD systems. We incorporated Raptor codes in the error
reconciliation protocol for a CV-QKD system, and showed
through numerical analysis that the proposed scheme achieve
near optimal key rates and significantly outperformed the
existing protocols based on fixed rate codes.

REFERENCES
[1] M. Navascués, F. Grosshans, and A. Acı́n, “Optimality of Gaussian

attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett.,
vol. 97, p. 190502, Nov 2006.

[2] P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance
continuous-variable quantum key distribution with a Gaussian modu-
lation,” Phys. Rev. A, vol. 84, p. 062317, Dec 2011.

[3] A. Leverrier and P. Grangier, “Continuous-variable quantum-key-
distribution protocols with a non-Gaussian modulation,” Phys. Rev. A,
vol. 83, p. 042312, Apr 2011.
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